If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+30x-9775=0
a = 2; b = 30; c = -9775;
Δ = b2-4ac
Δ = 302-4·2·(-9775)
Δ = 79100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{79100}=\sqrt{100*791}=\sqrt{100}*\sqrt{791}=10\sqrt{791}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-10\sqrt{791}}{2*2}=\frac{-30-10\sqrt{791}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+10\sqrt{791}}{2*2}=\frac{-30+10\sqrt{791}}{4} $
| 2=6−2m | | 5x+55=290 | | 2x-31=39x+2) | | 1/2(8x-80=4x+6 | | 25+2x=2x+39 | | 8(p+2)=21+7p | | 11x/18-10=x/6+22 | | 21/3c=2/2 | | -7r-1=-8+5(-7r+7) | | e/2=3e= | | (8x-3)-(5x+4)=14 | | y(0.5y+0.5)=15 | | 14w-9w=45 | | -6x-9=24x-6(5x-9) | | 2x-2=8,2x=8+2=10,x=10*2,x=5 | | 4(3x+5)-7=37 | | A^3-4a^2+8=0 | | (x+5)-(2x+10)=47 | | -25-4n=-5(5-4n) | | y*(0.5y+15)=15 | | e/2=33= | | 82=(11x+2)-(2x+1) | | 1=−2v-13 | | -4-3m=4(-1+7m) | | -2(2m+3)=18 | | Z4=1+i | | V=IcR | | -3y+5y(6y+9)=-1-5(4-y) | | -5(8+4x)=-5x+35 | | 30=5(v+8)-7v | | 7y+5y=25 | | -4(r-5)=16-6r |